Последние Статьи
Сварочные трансформаторы для электродуговой сва ...»
Несколько упрощая, можно сказать, что плазма об ...»
Сварочный трансформатор содержит в себе силовой ...»
Сварочный трансформатор преобразует сетевое нап ...»
Плазменная резка получила широкое распространен ...»

Основные рекомендации по выбору циркуляционного насоса для системы отопления

Основные рекомендации по выбору циркуляционного насоса для системы отопления

Наиболее важным фактором в процессе выбора циркуляционного насоса для системы отопления - является потребность здания в тепле, рассчитанная для наиболее холодного сезона года. При профессиональном проектировании данный показатель определяют на компьютере с помощью специализированного программного обеспечения. Ориентировочно его можно высчитать по площади обогреваемого помещения.

Согласно европейским стандартам на отопление 1 квадратного метра в доме, где есть одна или две квартиры необходимо 100 Вт, а для многоквартирных домов 70 Вт. Если состояние здания не отвечает нормативам, проектировщик берет в расчет более высокое удельное потребление тепла. Для жилых домов с улучшенной теплоизоляцией и производственных помещений требуется 30–50 Вт/кв.м.

На территории Украины подобные стандарты для домов с одной или двумя квартирами пока не определены. СНиП 2.04.07-86* “Тепловые сети” рекомендует рассчитывать максимальный тепловой поток на отопление 1 кв.м общей площади жилых домов, строящихся с 1985 года по новым типовым проектам, по следующим укрупненным показателям:

- для одноэтажных или двухэтажных зданий – 173 Вт/кв.м при расчетной температуре наружного воздуха –25 град C и 177 Вт/кв.м при –30 град C;

- для трехэтажных или четырехэтажных зданий – соответственно 97 и 101 Вт/кв.м.

По СНиП 2.04.05-91* “Отопление, вентиляция и кондиционирование” расчетная температура наружного воздуха в Киеве составляет –26 град C. Методом интерполяции получим, что в столице удельная тепловая потребность одно- и двухэтажных жилых домов равняется 173,8 Вт/кв.м, а трех- и четырехэтажных – 97,8 Вт/кв.м.

Определив потребление тепла (Q, Вт), следует перейти к расчету требуемой производительности насоса (подаче) по формуле:

G = Q/(1,16 х DT) (кг/ч), где:

DT – разница температур в подающем и обратном трубопроводе (в стандартных двухтрубных системах она составляет 20 град C; в низкотемпературных 10 град C; для теплых полов 5 град C);

1,16 – удельная теплоемкость воды (Вт*ч/кг*град C). Если используется другой теплоноситель, в формулу необходимо внести соответствующие коррективы.

Такую методику расчета предлагают заграничные проектировщики. В обязательном приложении к СНиП 2.04.05-91* приведена следующая формула:

G = 3,6 х *Q/(c х DT) (кг/ч), где:

c – удельная теплоемкость воды, равная 4,2 кДж/ кг*град C .

Для пересчета полученной величины в куб.м/ч (как правило, именно эта единица измерения производительности насосов используется в технической документации) необходимо разделить ее на плотность воды при расчетной температуре; при 80 град C она составляет 971,8 кг/куб.м.

Кроме необходимой подачи, насос должен обеспечивать давление (напор), достаточное для преодоления сопротивления трубопроводной сети. Для правильного выбора нужно определить потери в наиболее протяженной линии схемы (до самого дальнего радиатора).

Во время проектирования новой системы возможны точные расчеты с учетом сопротивления всех элементов нитки (труб, фитингов, арматуры и приборов); обычно необходимые сведения приводятся в технических паспортах на оборудование. Здесь можно использовать формулу:

H = (R х l + *Z)/p х g (м), где:

R – сопротивление в прямой трубе (Па/м);

l – длина трубопровода (м);

*Z – сопротивление фитингов и т. д. (Па);

p – плотность перекачиваемой среды (кг/куб.м);

g – ускорение свободного падения (м/кв.с).

В случаях с действующими теплопроводами подобные вычисления, как правило, невозможны. В таких ситуациях чаще всего пользуются приблизительными оценками.

Полученные опытным путем данные свидетельствуют, что сопротивление прямых участков трубы (R) составляет порядка 100–150 Па/м. Это соответствует необходимому напору насоса в 0,01–0,015 м на 1 м трубопровода. В расчетах нужно учитывать длину и подающей, и обратной линии.

Также на опыте было определено, что в фитингах и арматуре теряется около 30% от потерь в прямой трубе. Если в системе есть терморегулирующий вентиль, добавляется еще около 70%. На трехходовой смеситель в узле управления всей системой отопления или устройство, предотвращающее естественную циркуляцию, приходится 20%.

Cпециалисты компании «Wilo» - Э. Бушер и К. Вальтер рекомендуют следующую формулу примерного расчета напора (в метрах):

H = R х l х ZF, где

ZF – коэффициент запаса.

Если установка не оснащена ни терморегулирующим вентилем, ни смесителем, ZF = 1,3; для контура с терморегулирующим вентилем ZF = 1,3 х 1,7 = 2,2; когда система включает оба прибора ZF = 1,3 х 1,7 х 1,2 = 2,6.

Определив так называемую рабочую точку циркуляционного насоса (напор и подачу), остается подобрать в каталогах насос с близкой характеристикой. По производительности (Q) рабочая точка должна попадать в среднюю треть диаграммы.

Не стоит забывать, что рассчитанные параметры необходимы для действия системы при максимальной нагрузке. Такие условия встречаются крайне редко, наибольшую часть отопительного сезона потребность в тепле не так велика. Поэтому, если есть сомнения, всегда нужно выбирать меньший насос. Это позволяет не только сэкономить при его покупке, но и снизить в дальнейшем расходы на электрическую энергию.

Пример для самоконтроля

Правильность расчетов по представленной методике можно проверить, сравнив их результаты с итогами точных вычислений в реальном проекте, выполненном в соответствии со СНиП.

По заданию требовалось рассчитать циркуляционный насос для двухтрубной системы отопления с поэтажной разводкой трубопроводов от коллектора. Предварительно было определено, что потребность здания в тепле составляет 45,6 кВт, необходимый для отопления расход теплоносителя 2,02 куб.м/ч. Схема трубопроводов до самого отдаленного радиатора включает четыре участка и тепло регулирующий вентиль.

Суммарные потери давления в них равняются:

DP = 0,63 + 0,111 + 0,142 + 0,289 = 1,178 м

Согласно СНиП 2.04.05-91*, на неучтенные потери давления к этой величине следует добавить 10%:

DP = 1,178 х 1,1 = 1,296 м

Таким образом, циркуляционный насос для данной системы должен обеспечивать подачу 2,02 куб.м/ч теплоносителя и напор в 1,3 м.

При расчетах по методике, изложенной в статье, получаем:

H = 0,015 х (3,2 + 4,4 + 8,9 + 21,7) х 1,3 х 1,7 = 1,266 м, что не существенно отличается от величины, полученной ранее.

Ваше Имя:


Ваш отзыв: Внимание: HTML не поддерживается! Используйте обычный текст.

Оценка: Плохо           Хорошо

Введите код, указанный на картинке: